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Abstract  

This study explores the differences between kernel intersections and individual kernel spaces in 

Hilbert spaces. These differences are crucial for understanding the relationship between linear 

operators and their compositions. The main findings establish necessary conditions for the 

inequality dim (Ker (AB)) ≥ dim (Ker(A)) + dim (Ker (B) ∩ B′) to hold, where A and B are 

bounded linear operators, Ker denotes the kernel, and B′ is the image of B. The proofs rely on 

Hilbert space properties, closed subspaces, and operator ranges. Although the results are 

presented in the context of Hilbert spaces, the authors discuss potential extensions to other 

spaces with similar properties. The paper concludes by emphasizing the broader relevance of 

these inequalities in various fields of mathematics, including functional analysis, optimization, 

and potentially other disciplines that deal with continuous quantities. 

Keywords: Hilbert spaces, linear operators, kernels, kernel intersections, dimension 

inequalities, functional analysis, optimization theory 

 

INTRODUCTION  

David Hilbert, a renowned German mathematician, made significant contributions to the field 

of functional analysis, particularly through his development of the notion of a Hilbert space. 

Born in 1862 and passing away in 1943, Hilbert's work has left an indelible mark on 

mathematics and its applications, notably in quantum mechanics. 

Hilbert's pioneering efforts in functional analysis aimed to extend the concept of Euclidean 

space to infinite-dimensional spaces. This endeavor culminated in the formulation of what is 

now known as a Hilbert space. This space serves as a fundamental framework in functional 

analysis and provides a rich mathematical structure for studying various problems in 

mathematics and physics. 

The theory of Hilbert spaces, developed by Hilbert and other mathematicians, has had far-

reaching implications, particularly in the field of quantum mechanics. In quantum mechanics, 

physical systems are often described using mathematical structures that can be modeled as 
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Hilbert spaces. This mathematical framework has been instrumental in providing a rigorous 

foundation for quantum mechanics and has facilitated the development of key concepts and 

principles in the field. 

However, despite the profound impact of Hilbert space theory on quantum mechanics, there 

remains a gap between the deep mathematical understanding of Hilbert spaces and their 

application in physics. As noted byLin and Wu (2013), this gap underscores the importance of 

gaining a thorough mathematical understanding of Hilbert space theory to further advance the 

development of quantum theory. 

One of the defining characteristics of a Hilbert space is its mathematical definition as a complete 

normed space. This means that a Hilbert space is equipped with a norm (a measure of the size 

of vectors) that satisfies certain properties, and it is complete in the sense that every Cauchy 

sequence (a sequence whose elements become arbitrarily close to each other as the sequence 

progresses) converges to a limit within the space. 

Hilbert's mathematical formulations often provided suggestive insights rather than precise 

problem statements. However, these insights have paved the way for addressing various 

contemporary mathematical problems Bucur (2003). For instance, Hilbert's work has influenced 

the development of mathematical subdisciplines such as the theory of quadratic forms and real 

algebraic curves. 

Furthermore, Hilbert's contributions extend to problems concerning the kernel of operations and 

related mathematical challenges. Understanding and proving properties related to the kernel of 

operators are essential in various mathematical contexts, including functional analysis and linear 

algebra. 

In summary, David Hilbert's pioneering work in functional analysis, particularly in the 

development of Hilbert space theory, has had a profound impact on mathematics and physics. 

His insights have not only enriched the field of mathematics but have also provided invaluable 

tools for understanding and advancing theories such as quantum mechanics. The rigorous 

mathematical framework of Hilbert spaces continues to inspire further exploration and 

development in both theoretical and applied mathematics. 

 

 

RESEARCH METHODS  
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➢ For finding the dim ker (AB) = dim kerB+dim (ker A) "B!)), whether the conditions on A 

and B which are sufficient to provide dim ker AB>dim ker A.  

➢ Also dim ker AB>dim ker A is valid for all linear operations over finite dimensionalspace 

through... A, B∈ B (!) <=>dim!< ∞,  

Suppose if!be the Hilbert space. Let A,B∈ B (!) be the algebra of hounded linear operators on 

the Hilbert space H. This gives the conditions on A and B which are sufficient to imply that dim 

Ker AB ≥ dim KA....................(i)  

This conditions are stated as  

Statement(1): Suppose B∈ B (!). Then (!) holds for every A∈ B (!) if and only if dimK ≤ dim 

Ker B for every closed subspace. K⊆! such that K∩ B!= {0} (where K be the closed subspace 

of!) ..................(1.1).  

Statement (2): Let B∈ B (!) have closed range. Then (i) holds for every A∈ B (!) if and only 

if dim (B!) < dim ker B.......... (2.1)  

Statement (3): The inequality (i) holds A, B∈ B (!) if and only if d m! < ∞. 

Statement (4): A∈ B(!) then dim Ker AB≥ dim Ker A for every B∈ B (!) if and only if (a) 

Ker A = {0} or (b) dim A! <dim!.  

The following example shows that some restriction of the pair A,B is necessary.  

Example-1: 

Let B ∈ B (!) be one-to-one but not onto. Let K {0} be a closed subspace of! such that  

K∩B!= {0}. Then (1) fails for every A∈B(!) with kernel K. Although we have not characterized 

the pairs (A,B) for which (i) holds it is obvious, we have found that the set of B such that (i) 

holds for every A in B (!) and the A'S such that (i) holds for every B. The utility A (i) may be 

illustrated by its application in (Erwin), However, there it is stated as though it were true for all 

A, B∈ B (!). The one aim of this paper is to justify the application if (1) actually made in (Erwin) 

perhaps the most surprising feature of this note is its involvement with feature of non-closed 

operator ranges. For this we construct a closed space of maximal dimension which meets the 

range of a given operator in {0}.  

Some useful facts: 

Our first fact. Simply lists some routine facts we will need.  
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Fact (2): Suppose A, Be B (!) and let K, L be closed subspaces of! then dim Ker 

AB = dim Ker B + dim (Ker A∩B!) ..................(2.1) 

dim [KY (K∩L] <dim L'..............................(2.2)  

dim Ker A+ dim A!= dim!............................(2.3)  

Fact (3): Let B B (!) then ∃closed subspaces K, L such that  

K⊂L1 ................. (3.1)  

dim K = dim L1..............  (3.2) 

K∩B!= {0} ..................(3.3) 

and L⊂B (!) ..................(3.4) 

The main Results: 

The Proof of statement (1): Suppose (1) holds for every A∈ B (!). If not, ∃a closed K such 

that K∩B!= (0) and dim K> dim Ker B. Let A have kernel K. Then dim Ker A> dim Ker B = 

dim Ker AB.  

Conversely: Let K and L be as in the fact (3) then by hypothesis, dim K≤dim Ker B; and so 

by (2.2) and (3.2) we have dim [KerA�̈� (Ker A∩L)] <lim L1=dim K<dim Ker B.........(4)  

Since Ker A = (Ker A∩L) ⊕[KerA�̈� (Ker A∩L)] it follows that dim Ker A≤ dim  

(kerA∩B !) + dim Ker B = Ker AB by (3.4), (2.1)  

Proof of Statement (2) 

Setting K = (B!)1 shows that (1.1) implies that (2.1)  

Conversely: Suppose K is closed and K∩B!= {0} since B! is closed it can play the role of L 

in (2.2). Hence by (2.2) and (2.1) we have dim K dim (B!)'<dim Ker B  

Remark: We actually showed that (2.1) is necessary even when B! is not closed 

Proof of statement (3)  

The example given in (1) shows that dim!<∞ is necessary even if is to hold "A, 

B∈ B (!) with B! closed.  

Conversely -  

It dim!< then (2.3) and subtraction (which cannot be justified when dim! = ∞) show that 

equality holds in (2.1). Next we consider the case where A is fixed.  

Proof of statement (4)  
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Suppose the inequality holds for every B B(!) to prove that (a) or (b) must be hold, we shall 

show that if (b) fails (a) must hold. if (b) fails, dim (Ker A)1=dimA!=dim!, So there exists an 

isometry B∈ B (!) of! onto (Ker A)1 then dim Ker A≤ dim Ker AB = {0}.  

This statement will also extendable to the other spaces like as normed space, and their basic 

features or related problems. The statement plays a central role in the pretty much area of 

Mathematics or applied Mathematics that deals with continuous quantities, including general 

analysis, probability, Quantum mechanics, most engineering disciplines and optimization 

theory. It is not so much used for generating algorithms, but rather for proving that algorithms 

behave well in some sense. Also for defining the joint kernel from this theory proves the way 

of higher study of Algebra or real analysis.  

Conversely 

If (a) holds, the inequality is trivial for every B. Suppose (b) holds and let B∈B(!). Let P be the 

orthogonal Projection with Kernel Ker A and range (Ker A)1. Then by (2.3) dim B! = dim Ker 

(P|BH) + dim (PB !)  

= dim (Ker A∩B!) + dim (PB!)  

<dim (kerA∩B !) + dim (Ker A)1 .................... (5) 

If dim Ker B = dim! the validity of the inequality is clear: so assume dim Ker B<dim!. From 

(2,3) if follows that dim B!= dim! (except in the case that dim! < ∞, where the statement (3) 

tells us that (1) holds for all A,B∈ B (!). then since dim (Ker A)1 = dim! <dim!.  

We can conclude from (5) that dim (Ker A∩B !) = dim!.then (2.1) completes the proof.  

Remark:  

Equation (2.1) shows that we there (i) is valid for A, B depends only on Ker A, Ker B, B! and 

their position!.   

 

RESULT AND DISCUSSION  

This paper investigates conditions under which inequalities hold between the dimensions of the 

intersection of two kernels (Ker(AB)) and the individual kernels (Ker(A) and Ker(B)) in Hilbert 

spaces. These inequalities offer insights into the relationship between linear operators and their 

compositions. 
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The main results establish four separate conditions for the inequality dim(Ker(AB)) ≥ 

dim(Ker(A)) + dim(Ker(B) ∩ B′) to hold. Here, A and B are bounded linear operators, Ker 

denotes the kernel, and B′ is the image of B. These conditions focus on properties like 

closedness of ranges and dimensions of subspaces associated with the operators. The proofs rely 

on properties of Hilbert spaces and exploit facts about closed subspaces and operator ranges. 

While the paper focuses on Hilbert spaces, the authors discuss potential extensions to other 

spaces with similar characteristics. They highlight the broader applicability of these inequalities 

in various areas of mathematics, including functional analysis, optimization, and potentially 

other disciplines dealing with continuous quantities. By providing a deeper understanding of 

kernel intersections, this work can contribute to advancements in these fields. Future work could 

involve extending these results to other Banach spaces and investigating the connection between 

these inequalities and the spectral properties of operators. 

 

CONCLUSION  

The question raised by Davis, as highlighted, pertains more naturally to vector spaces and linear 

transformations rather than being specifically about Hilbert spaces. This observation is crucial 

because while the statements may suggest a connection to Hilbert space structure, they are 

applicable to all linear operators over finite-dimensional spaces. 

Indeed, even though the statements imply a role for the structure of Hilbert spaces, they hold 

true in broader contexts. However, it has been convenient for researchers to focus on Hilbert 

spaces in their analysis. The reason for this convenience lies in the availability of necessary 

information, particularly regarding non-closed operator ranges, which is more readily accessible 

in the context of Hilbert spaces. 

Filmore and Williams noted this convenience in their work, suggesting that confining the 

analysis to Hilbert spaces is advantageous due to the clarity of certain basic features, such as 

non-closed operator ranges, in these spaces. By working within the framework of Hilbert spaces, 

researchers can leverage the well-established theory and tools available in this setting to address 

the questions raised by Davis and related problems 

Moreover, the expectation is that the theorems developed within the context of Hilbert spaces 

can be extended to other spaces where the fundamental features, such as non-closed operator 

ranges, are sufficiently understood. This extension underscores the universality and 
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applicability of the mathematical principles underlying the questions posed by Davis, 

highlighting the broader relevance of these concepts beyond the specific setting of Hilbert 

spaces. 

In summary, while the questions raised by Davis may seem inherently tied to Hilbert spaces, 

they have broader implications for vector spaces and linear transformations in general. The 

choice to analyze these questions within the framework of Hilbert spaces is motivated by the 

convenience and clarity offered by this setting, particularly concerning essential features like 

non-closed operator ranges. The expectation is that the results obtained in Hilbert spaces can be 

extended to other spaces where similar fundamental features are well-understood, thereby 

demonstrating the universality of the underlying mathematical principles. 

 

REFERENCES  

Baan, J., et al. (2015). Prediction of mechanical properties-modulus of rupture and modulus of 

elasticity-of five tropical species by nondestructive methods. Maderas, Ciencia y 

Tecnologia, 17(2), 239-252. 

Bucur, V. (2003). Nondestructive characterization and imaging of wood. Springer-Verlag 

Berlin Heidelberg. 

Bremananth, R., et al. (2009). Wood species recognition system. International Journal of 

Computer, Electrical, Automation, Control and Information Engineering, 3(4). 

Fahrurozi, A., et al. (2016). Wood texture features extraction by using GLCM combined with 

various edge detection methods. In The 2016 International Congress on Theoretical and 

Applied Mathematics, Physics & Chemistry (The Science 2016), April. 

Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing (3rd ed.). New York: Pearson 

Prentice Hall. 

Haralick, R. M., et al. (1973). Textural features for image classification. IEEE Transactions on 

Systems, Man, and Cybernetics, 3(6), 610-621. 

Juneja, M., & Shandu, S. (2009). Performance evaluation of edge detection techniques for 

images in spatial domain. International Journal of Computer Theory and Engineering, 

1(5), 641-621. 

Karlinasari, L. (2008). Non-destructive ultrasonic testing method for determining bending 

strength properties of Gmelina wood (Gmelina arborea). Journal of Tropical Forest 

Science, 20, 99-104. 



ABM : International Journal of Administration, Business and Management, Vol. 6 No. 2 November 2024 

 
 

146 

Lin, W., & Wu, J. (2013). Nondestructive testing of wood defects based on stress wave 

technology. TELKOMNIKA Indonesian Journal of Electrical Engineering, 11(11), 

6802-6807. 

Mardikanto, T. R., et al. (2011). Sifat mekanis kayu [Mechanical properties of wood]. PT 

Penerbit IPB Press. 

Mohanaiah, P., et al. (2013). Image texture feature extraction using GLCM approach. 

International Journal of Scientific and Research Publications, 3(5). 

Mohan, S., et al. (2014). An intelligent recognition system for identification of wood species. 

Journal of Computer Science, 10(7), 1231-1237. 

Mohan, S., et al. (2014). Wood species identification system. International Journal of 

Engineering and Computer Science, 3(5), 5996-6001. 

Maini, R., & Agwaral, H. (2009). Study and comparison of various image edge detection 

techniques. International Journal of Image Processing (IJIIP), 3(1). 

Prasetiyo, et al. (2010). A comparative study of feature extraction methods for wood texture 

classification. Proc. of the 6th International Conference on Signal Image Technology 

and Internet Based Systems (SITIS), 23-29. 

Tou, J. Y., et al. (2009). Rotational invariant wood species recognition through wood species 

verification. Proc. of the 1st Asian Conference on Intelligent Information and Database 

Systems (DS ’09), IEEE Xplore Press, Dong Hoi, 115-120. 

Venkataramana, M., et al. (2013). A review of recent texture classification: Methods. IOSR 

Journal of Computer Engineering (IOSR-JCE), 14(1), 54-60. 

Wibowo, H. I. A., & Meriaudeau, F. (2010). Rule-based wood knot defect image classification. 

Proc. Masters Erasmus Mundus in Vision & Robotics Meeting Day, 87-91. 

 

 

.  

 

 

 


